
System implementation and
deployment

ICT284 Systems Analysis and Design

Topic 10

Previous topics have covered the activities involved in systems

analysis and design. In this topic, we look at activities relating to

implementing the system and deploying the completed system in

the organisation.

Implementation activities relate to building and testing the

software and integrating all the components. Deployment

activities involve putting the system into operation - acceptance

testing by the users, training the users, converting data to the

new DBMS, configuring and testing the production environment,

installing the system and turning it on.

About this topic

1. Explain how information systems are used within organisations to fulfil organisational
needs

2. Describe the phases and activities typically involved in the systems
development life cycle

3. Describe the professional roles, skills and ethical issues involved in systems analysis
and design work

4. Use a variety of techniques for analysing and defining business problems and
opportunities and determining system requirements

5. Model system requirements using UML, including use case diagrams and
descriptions, activity diagrams and domain model class diagrams

6. Explain the activities involved in systems design, including designing the system
environment, application components, user interfaces, database and software

7. Represent early system design using UML, including sequence diagrams,
architectural diagrams and design class diagrams

8. Describe tools and techniques for planning, managing and evaluating systems
development projects

9. Describe the key features of several different systems development methodologies

10. Present systems analysis and design documentation in an appropriate, consistent
and professional manner

Unit learning outcomes addressed in
this topic

After completing this topic you should be able to:

• Outline the activities that take place in system implementation and
deployment

• Describe various types of software tests and explain how and why
each is used

• Describe how to design and conduct a user acceptance test

• Briefly describe approaches to data conversion

• Briefly describe training and user support requirements for new and
operational systems

• Explain in general terms the activities involved in managing the
implementation, testing and deployment of a system

• Describe several approaches to system deployment and the
advantages and disadvantages of each

• Describe the support activities that continue after deployment

Topic learning outcomes

READING

• Satzinger, Jackson & Burd, Chapter 14

• There is quite a lot of detail here, but just focus on the main
points.

• 6th edition: Chapter 13, Making the System Operational

Except where otherwise referenced, all images in these slides are
from those provided with the textbook: Satzinger, J., Jackson, R. and
Burd, S. (2016) Systems Analysis and Design in a Changing World,
7th edition, Course Technology, Cengage Learning: Boston. ISBN-13
9781305117204

Resources for this topic

• Introduction

• Testing

Types of test

• Deployment

Deployment activities

Managing implementation, testing and
deployment

Approaches to deployment

Support activities after deployment

Topic outline

Introduction

Implementation and
Deployment activities

8

Implementation includes programming and testing activities.
Deployment includes system tests, converting data, training,
setting up the production environment, and deploying the
solution

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Implementation and
deployment

• Implementation activities relate to building and
testing the software and integrating all the
components

• Deployment activities involve putting the system
into operation - acceptance testing by the users,
training the users, converting data to the new
DBMS, configuring and testing the production
environment, installing the system and turning it
on

Testing

Unit testing
Integration testing

System testing
User acceptance testing

Testing

• “the process of examining a component,
subsystem, or system to determine its
operational characteristics and whether it
contains any defects”

• Testing involves defining expected operational
characteristics against the specifications for
functional and nonfunctional requirements – and
checking actual performance against these

• If there is a shortcoming or defect, the development
team cycles back to earlier stages to remedy it

• Testing occurs during both implementation and
deployment

Testing

Test cases and test data must be developed:

• Test case – a formal description of:

1. A starting state or condition

2. One or more events to which the software
must respond

• The test cases are represented by a set of test
data – the set of starting states and events

• Test cases are required to full test all normal and
exceptional processing situations

12

Common test types

13

Figure 14.2 in text
Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Unit testing

• The lowest level and earliest testing for a
software system

• Tests of an individual method, class, or
component before it is integrated with other
software

• Done in isolation – ensure it works correctly

• May need driver and stub methods or classes

• Done by the programmer who wrote the code –
faster and simpler

14

Unit testing: driver and stub
components

Stub – a method or class developed for unit
testing that simulates the behavior of a method

invoked that hasn’t yet been written

Driver – a method or class developed for unit
testing that simulates the behavior of a method
that sends a message to the method being tested

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Integration testing

• Integration test – tests of the behavior of a
group of methods, classes, or components

• After small units are tested, they are combined
into a larger component and tested together

• The objective is to test the interfaces between
the components, and the functionality of the
entire piece of software

• Integration testing often
starts small, and grows as
more components are added
- increasing complexity of
testing

16

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Integration testing - process

• Build and unit test the components to be integrated

• Create test data – comprehensive test data, must be
coordinated between developers

• Conduct the integration test – Assign resources and
responsibilities. Plan frequency and procedures

• Evaluate the test results – Identify valid and invalid
responses

• Log the test results – Log valid test runs. Also log errors

• Correct the code and retest

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Integration testing

• Integration testing of object-oriented software is
very complex because an object-oriented
program consists of a set of interacting objects:

• Methods can be (and usually are) called by many other
methods, distributed across many classes

• Classes may inherit methods and state variables from
other classes

• The specific method to be called is dynamically
determined at run time

• Objects can retain internal variable values

18

System and stress testing

• System test – an integration test of an entire
system or independent subsystem

• Stress (performance) test
determines if the system
can meet performance
criteria such as response
time and throughput

• Test the functional and
nonfunctional aspects of
the new system

• Can be performed at the
end of each iteration, or more frequently

19

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

System and stress testing

Build and smoke test – a system test that is
performed daily or several times a week

• The system is completely compiled and linked
(built), and a battery of tests is executed to see
whether anything malfunctions in an obvious way
(“smokes”)

• Rapid feedback on integration problems as
catches any problems that have come up since
the last system test

20

User Acceptance Testing (UAT)

• User acceptance test – a system test performed
to determine whether the system fulfills user
requirements and can support all business and
user scenarios

• May be performed near the end of the project
(or at end of later project iterations)

• Often a formal activity that must be signed off
by the client

• Vital part of process – if UAT not done properly,
very likely the deployed system will have
problems

21

User Acceptance Testing (UAT)

• Planning the UAT should commence early in the
project and continue throughout

• Base around business events, user stories, use
cases, FURPS+

• Develop test cases

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

User Acceptance Testing (UAT)

• Log and track testing results

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Testing continues throughout the implementation and
deployment core processes:

Implementation:

• Unit testing - Tests of an individual method, class, or
component before it is integrated with other software

• Integration testing - tests of the behavior of a group
of methods, classes, or components. Gradually builds up
in complexity

Deployment:

• System and stress testing – system testing is an
integration test of an entire system or independent
subsystem, while stress testing determines if the system
can meet performance criteria such as response time
and throughput

• User acceptance testing - whether the system fulfills
all user requirements

Summing up…

Deployment activities

Data conversion
User training and documentation

Set up the production environment

Deployment activities

26

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Converting and initialising data

• An operational system requires a fully populated
database to support ongoing processing

• Data needed at system startup can be obtained
from:

• Files or databases of a system being replaced

• Manual records

• Files or databases from other systems in the
organisation

• User feedback during normal system operation

• Can reuse existing databases, or reload into a
new one

27

Approaches to converting to
new database

28

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Training users

• Training for end users emphasises hands-on
use for specific business processes or functions,
such as order entry, inventory control, etc

• System operator training can be much less
formal, or by self study

29

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

System and user documentation

Both system and end users require documentation

• System documentation is required for
building, maintaining and upgrading the system

• Generated throughout the SDLC

• Integrated development environments ensure
that system documentation is always in synch
with deployed system

• User documentation provides support for the
end users – routine operations, troubleshooting,
etc

• Usually online as part of the application

Configure and set up
production environment

• Applications built from software components
based on interaction standards such as CORBA,
SOAP, .NET etc must be configured so that they
work together

• All the tasks involved in acquiring, installing and
configuring the hardware and software
infrastructure before the application software
can be installed and tested

• Some of this will already exist, supporting
existing information systems

• The main activities to be carried out in the
Deployment phase before actual deployment
are:

• Populating or converting databases

• Carrying out user training and developing user
and system documentation

• Acquiring, installing and configuring the
hardware and software infrastructure for the
production environment

Summing up…

Managing implementation, testing
and deployment

Managing implementation,
testing and deployment
• In a complex project there are many interdependencies

that must be considered when developing a project plan –
particularly in an iterative project where the system is
developed incrementally

For example:

• Determining the order in which software components will
be built/bought, tested and deployed

• Managing source code versions - e.g. with a source code
control system that tracks and controls changes by
multiple users

• Determining how the new system is to be deployed

Development order

• Input, process, output

– based on data flow from input to output

- simplifies testing, as input modules done first

• Top down

– analyse method dependencies

- Advantage is there is always a working version as higher
level modules can call stubs

• Bottom up

- do low level modules first

• Use case driven

- focus on use cases first so can consider factors such as
risk, user feedback, resource availability, early deployment
of some parts, etc

Approaches to deployment

Direct deployment
Parallel deployment
Phased deployment

Packaging, installing, and
deploying components

Approaches:

• Direct deployment

• Parallel deployment

• Phased deployment

Issues to consider:

• Incurring costs of operating both systems in parallel

• Detecting and correcting errors in the new system

• Potentially disrupting the company and its IS operations

• Training personnel and familiarising customers with new
procedures

- There is a trade-off between cost, complexity
and risk 37

Direct deployment

• Installs a new system, quickly makes it operational, and
immediately turns off any overlapping systems

Higher risk, lower cost

38

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Parallel deployment

• Operates the old and the new systems for an extended
time period

Lower risk, higher cost

39

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

Phased deployment

Installs a new
system and
makes it
operational in a
series of steps or
phases

Reduced risk
but more
complexity

40

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• There are various ways to deploy the new system, each
involving a trade-off between cost, complexity and risk:

Direct –

• switch from old to new with minimal concurrent operation.

• Higher risk, lower cost

Parallel –

• run old and new systems together for a period of time

• Lower risk, higher cost

Phased –

• the new system is introduced in a series of steps or
phases

• Reduced risk but more complexity

Summing up…

Support activities

Supporting the system

• The objective of support is to keep the system
running successfully throughout its productive
life

• Predictive SDLCs usually included ‘Support’ as a
separate phase after deployment

• Adaptive and iterative SDLCs tend not to, and
instead may consider support to be a separate
project in its own right

• Activities: Maintaining the system

 Enhancing the system

 Supporting the users

Change and version control

• Change occurs constantly throughout development and
implementation, and continues (more slowly) after the
system is deployed

• Managing change is essential, and change and version
control tools and processes are incorporated into
implementation activities and continue through the life of a
system

• Complex systems are developed and installed in a series of
versions to simplify testing, deployment and support.
Multiple versions may exist, in various stages of
development

• There are various version numbering schemes, but the
general format is major.minor.revision, e.g. 2.3.1

•

Versions

• Test – internal, created during development

• Alpha – incomplete but ready for some level of integration
or usability testing

• Beta – stable enough to be tested by end users over some
period of time

• Production (or release) – formally released to users
intended to be operational for long term use

• Maintenance – a system update to a production version
to provide bug fixes and minor updates

• All beta and production versions must be stored as long as
they are installed on any user machines

Error reports and change
requests
• Any change requests or bug reports are handled through

formal control procedures to ensure changes are
adequately described and planned

• There is usually a formal reporting method so that all
reports can be managed centrally and any impacts
evaluated

• Approved changed are added to a list for subsequent,
budgeting, scheduling, planning and implementation

• Where possible changes are implemented and tested on a
copy of the production system, and after successful testing
the copy becomes the new operational system

Example: Error report in Microsoft
Visual Studio

Image from: Systems Analysis and Design in a Changing World, 7th Edition ©2016. Cengage Learning

• Once the system is deployed, it must still be
supported so that it continues to operate
productively

• Supporting the system may be considered a
phase of the SDLC, or in an iterative project, a
project in itself.

• Support activities involve maintaining and
enhancing the system, and ensuring users
continue to be supported, including requesting
fixes or changes

Summing up…

After completing this topic you should be able to:

• Outline the activities that take place in system implementation and
deployment

• Describe various types of software tests and explain how and why
each is used

• Describe how to design and conduct a user acceptance test

• Briefly describe approaches to data conversion

• Briefly describe training and user support requirements for new and
operational systems

• Explain in general terms the activities involved in managing the
implementation, testing and deployment of a system

• Describe several approaches to system deployment and the
advantages and disadvantages of each

• Describe the support activities that continue after deployment

Topic learning outcomes revisited

We’ve now covered all the activities in the SDLC

and some of the tools and techniques involved. In

the final two topics, we change the focus to

managing the systems development process itself.

This involves consideration of project management

activities and the choice of development

methodology.

What’s next?

